
Application of applied Physics: Report

Donovan Lewis B1.2

26/1/2014

Table of Contents

Introduction	2
NanoTalk	2
Problem	2
LED	3
Microcontroller	4
Lab-on-a-chip (LOC)	5
A night out	5
Total power consumption	6
Current	
Voltage	6
Electronic circuit	1

Introduction

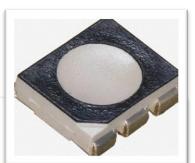
This report is about an application of Applied Physics to a typical Industrial Design problem. This to show you that I'm able to apply physics on ill-defined design problems as on well-defined precooked exercises. I choose to link this report to my own next nature project, NanoTalk.

NanoTalk

NanoTalk is concept where a special bracelet, which you can wear and put around a glass shows your openness for a relationship during the nightlife.

The bracelet analyze with the built-in lab-on-a-chip's your saliva when you take a sip of your drink. After that this bracelet will start to get a certain color which is assigned to a specific amount of testosterone, which again is linked to certain status. For example: single = blue or just divorced = pink. This is possible because studies have pointed out that you can see changes in testosterone level based on you relationship status.

Problem What is a proper power solution to power one NanoTalk bracelet for a whole evening?

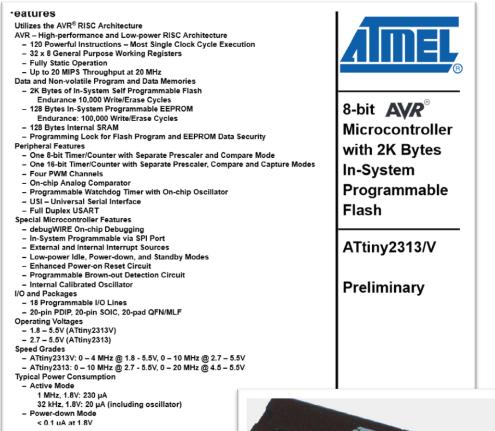

There are some factors which influence the power usage of the bracelet:

- The LED
- How much power the micro-controller uses
- How much power the Lab-on-a-chips uses
- How long it is turned on

These factors first need to be investigated before calculating the total power usage.

LED

I choose a RGB PLCC6 LED due to its size and Luminous Intensity. I studied the datasheet to gain some information about the LED.

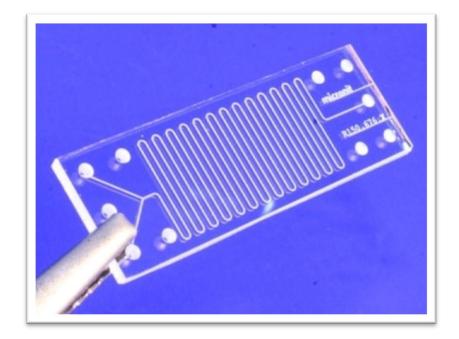

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

R G B Forward Current Note 1 I_F 50 50 50 mA Peak Forward Current Note 2 I_{pp} 200 100 100 mA Reverse Voltage V_R 5 5 5 V Power Dissipation P_0 125 200 200 mW Operation Temperature T_{egr} $-40 \sim +100$ °C °C Storage Temperature T_{sig} $-40 \sim +100$ 110 °C Dunction Temperature T_j 110 110 °C Dunction/ambient 1 chip on R_{TRUA} 650 580 680 °C/W Dunction/solder point 1 chip on R_{TRUA} 300 280 300 °C/W	Items	Symbol	Absolute Maximum Rating			
Peak Forward Current. None 2 I_{pp} 200 100 100 mA Reverse Voltage V_R 5 5 V Power Dissipation P_0 125 200 200 mW Operation Temperature T_{opr} $-40 \sim +100$ \circ C \circ C Storage Temperature T_{stg} $-40 \sim +100$ \circ C \circ C Junction Temperature T_J 110 110 \circ C Junction/ambient 1 chip on R_{TNLA} 650 580 680 \circ C/W Junction/solder point 1 chip on R_{TNLA} 300 280 300 \circ C/W			R	G	В	Unit
Reverse Voltage V_R 5 5 V Power Dissipation P_D 125 200 200 mW Operation Temperature T_{opr} $-40 \sim +100$ °C °C Storage Temperature T_{seg} $-40 \sim +100$ °C °C Junction Temperature T_s 110 110 °C Junction/ambient 1 chip on R_{ndA} 450 400 450 °C/W Junction/solder point 1 chip on R_{ndA} 650 580 680 °C/W	Forward Current Note 1	I _F	50	50	50	mA
Power Dissipation Po 125 200 200 mW Operation Temperature T_{opr} $-40 \sim +100$ °C °C Storage Temperature T_{seg} $-40 \sim +100$ °C °C Junction Temperature T_{seg} 110 110 °C Junction/ambient 1 chip on R_{m0A} 450 400 450 °C/W Junction/ambient 3 chips on R_{m0A} 650 580 680 °C/W	Peak Forward Current Note 2	I _{FP}	200	100	100	mA
Operation Temperature T_{cpr} $-40 \sim +100$ \circ C Storage Temperature T_{srg} $-40 \sim +100$ \circ C Junction Temperature T_{srg} $-40 \sim +100$ \circ C Junction Temperature T_{srg} 110 110 \circ C Junction Temperature T_{srg} 450 400 450 \circ C/W Junction/ambient 1 chip on R_{muA} 650 580 680 \circ C/W Junction/solder point 1 chip on R_{muS} 300 280 300 \circ C/W	Reverse Voltage	V _R	5	5	5	V
Storage Temperature T_{stg} $-40 \sim +100$ \circ C Junction Temperature T_j 110 110 110 \circ C Junction/ambient 1 chip on R_{mdA} 450 400 450 \circ C/W Junction/ambient 3 chips on R_{mdA} 650 580 680 \circ C/W Junction/solder point 1 chip on R_{mus} 300 280 300 \circ C/W	Power Dissipation	P _D	125	200	200	mW
Junction TemperatureT110110°CJunction/ambient 1 chip onR mdA450400450°C/WJunction/ambient 3 chips onR mdA650580680°C/WJunction/solder point 1 chip onR mus300280300°C/W	Operation Temperature	T _{opr}	-40 ~ +100			°C
Junction/ambient 1 chip onR TMA450400450°C/WJunction/ambient 3 chips onR TMA650580680°C/WJunction/solder point 1 chip onR TMA300280300°C/W	Storage Temperature	T _{stg}	-40 ~ +100			°C
Junction/ambient 3 chips on R _{THA} 650 580 680 °C/W Junction/solder point 1 chip on R _{THOS} 300 280 300 °C/W	Junction Temperature	т,	110	110	110	°C
Junction/solder point 1 chip on R _{THUS} 300 280 300 °C/W	Junction/ambient 1 chip on	R _{THUA}	450	400	450	°C/W
1705	Junction/ambient 3 chips on	R _{THUA}	650	580	680	°C/W
Junction/solder point 3 chips on R _{THUS} 450 430 480 °C/W	Junction/solder point 1 chip on	R _{mas}	300	280	300	°C/W
	Junction/solder point 3 chips on	R _{THUS}	450	430	480	°C/W
Electrostatic Discharge ESD 1000 V	Electrostatic Discharge Classification (MIL-STD-883E)	ESD	1000 V			

We need at least a 5V 50mA battery if we assume that when the LED is making certain colors in total only one LED is on.

Microcontroller

I've compared different microcontrollers to energy consumption, dimensions and possibilities. That resulted that the ATtiny2313/V¹ is most suitable for the bracelet. That because he can already operate at 1.8 volts and 230 μ A and is very small.



A ATTINY2313-20PI

¹ <u>http://www.atmel.com/images/doc2543.pdf</u> (accessed 30-1-2014)

Lab-on-a-chip (LOC)

It's not completely clear how much power a LOC needs to operate. Most of the power is used to pump the solution through the micro-channels. New research² has ensured that the first required 10KV is brought down to an astounding 0.25V. I further need to assume that current isn't very high either. So I assume that it is bit more than a micro-controller, so around 500 μ A.

A night out

I looked to typical opening hours from different bars and club. By comparing the different opening hours I came to average of 6 hours a night.

² Peter Iglinski-Rochester. University of Rochester. 2013. <u>http://www.futurity.org/membrane-shrink-power-lab-on-a-chip/</u> (Accessed 28-1-2014)

Total power consumption

Current

By answering all the sub-question I can now answer my main question. If I add up each factor, I come to a total of;

50mA+*230μA+500μA* = *50.73mA*

I need that amount of ampere for at least 6 hours. So the battery will at least need to be;

50.73mA*6 Hours = 304.38mA

Voltage

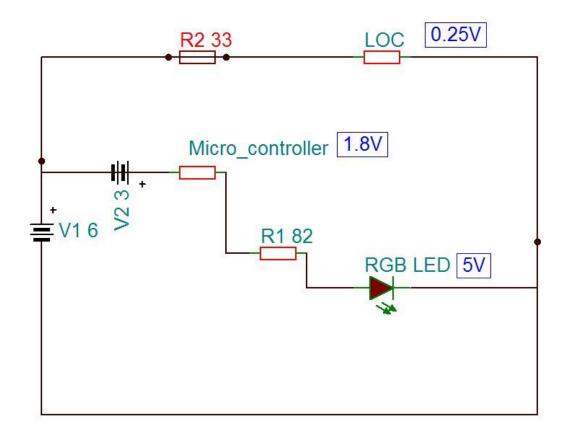
The total voltage what needs to be provided is;

5V+0.25V+1.8V=7.05V

So a proper power solution is:

Lithium Coin BR1220

Varta 6.0V, CP300H NiMH Rechargeable Coin Cell Battery, Tagged Terminal, 300mAh



Brand Range	Panasonic BR
Capacity	35mAh
Chemistry	Lithium Polycarbon Monofluoride
Diameter	12.5mm
Dimensions	12.5 x 2mm
Maximum Continuous Current	0.03mA
Maximum Operating Temperature	+80°C
Minimum Operating Temperature	-30°C
Nominal Voltage	3V
Operating Temperature Range	-30 → +80°C
Size	BR1220
Terminal Type	Standard
Typical Application	Calculators, Cameras, Watches

Capacity	300mAh
Chemistry	NiMH
Diameter	25.1mm
Dimensions	7.55 x 25.1mm
Maximum Continuous Current	560mA
Mounting Orientation	Vertical
Nominal Voltage	6.0V
Operating Temperature Range	$-20 \rightarrow 65^{\circ}C$
Size	CP300H
Terminal Type	Tagged

Electronic circuit

- V1 = Varta 6.0V, CP300H NiMH Rechargeable Coin Cell Battery, Tagged Terminal, 300mAh
- V2 = Lithium Coin BR1220
- $R1 = 9/50*10^{-3} \approx 82\Omega$
- $R2 = 6/185*10^{-3} \approx 33\Omega$

The idea is that the rechargeable batteries will be recharged every evening where the coin batteries will be replaced once every month.

Capacity coin battery/Usage microcontroller= Operating ours $35mAh/230\mu = 152.17$ Hours 152.17/6(hours each evening) = 25.3 Evenings will it last